特别分会 2:

Generative AI and Social Computing: Interdisciplinary Integration and Ethical Challenges

议题:

The analysis of social phenomena driven by data utilizes technologies such as big data mining and machine learning to analyze social phenomena like social networks, economic activities, and population mobility, and to gain an in-depth understanding of social behavior patterns. Computational modeling and simulation involve constructing computational models of social systems, simulating processes such as social evolution and group decision-making, and predicting social development trends. Social computing and policy evaluation rely on computational means to assess the effectiveness of policies, provide a scientific basis for policy formulation, and promote the sustainable development of society.

会议主题:

The main topics of this special session include, but are not limited to, the following:

  • Aggregation scheme in multi-party learning
  • Incentives mechanism in multi-party learning
  • Fairness and interpretability in multi-party learning
  • Asynchronous Communication in multi-party learning
  • Privacy, security, and robustness in multi-party learning
  • Fault tolerance and active sampling in multi-party learning
  • Adaptive and personalized techniques in multi-party learning
  • Resource allocation and management in multi-party learning
  • Heterogeneous data, model, and system in multi-party learning
  • Model compression and communication efficiency in multi-party learning
  • Collaborative optimization and convergence analysis in multi-party learning
  • Incomplete, imbalance, and multimodal data in multi-party learning
  • New applications for collaborative multi-party learning
  • 组织者简介:

    高原高远于2018年和2022年分别获得西安电子科技大学的工学学士学位和博士学位。自2023年以来,他一直是西安电子科技大学电子工程学院的博士后研究员。他于2021年至2022年期间,曾作为访问学者在新加坡南洋理工大学的计算机科学与工程学院进行学术访问。他是中国博士后科学基金支持计划的获奖者。他目前的研究兴趣包括安全人工智能、多方学习和协同优化。到目前为止,他已在上述领域的多个高质量和有影响力的期刊上发表或合作发表了众多学术论文,例如IEEE T-PAMI、T-CYB、T-NNLS、T-KDE等。此外,他还担任多个领先领域的期刊和会议的审稿人,以及国际会议的程序委员会成员。

    分会投稿流程:

    如果您希望参加GASC特别分会,请将您的稿件通过 ConfSync:https://confsync.cn/csae/submission系统提交,并选择 Section“Generative AI and Social Computing: Interdisciplinary Integration and Ethical Challenges”。我们会将您的投稿分配给 Prof. Ji Luo进行初审,初审通过之后将安排专家进行二审,稿件录用通知发放时间与主会议通知时间一致。有任何问题可以联系:info@confsync.cn 。